If You Think the U.S. Can Go 100% Renewables, You’re Fantasizing


Ideas that the U.S. can or should go 100% renewables are beyond crazy and those who irresponsibly suggest such fantasies are endangering the country.

We take it for granted in the world’s richest and most advanced economy that things will work when we want them to work, but a 100 percent renewable plan would put that in jeopardy. This brief looks into the intermittency, land requirements, capacity factors, cost of transition and construction materials that limit the ability of the U.S. to adapt to 100% renewable energy.

100 % RenewablesAdvocates for wind and solar energy are trying to convince Americans that the economy can thrive on 100 percent renewable energy. However, wind and solar energy are intermittent sources that currently need back up power from reliable energy sources like coal, nuclear, and natural gas to keep the lights on, keep our homes heated, and keep our factories running.

The truth is, the physics of wind and solar energy render 100 percent renewable energy nothing more than a myth. These technologies can only operate if the sun shines or the wind blows, requiring large amounts of storage for back up. Additionally, their land mass requirements are immense, they have much lower capacity factors compared to traditional sources, and the cost of transition would be enormous. Bottom line: setting a national goal of relying upon 100 percent renewable energy within a decade would lead to catastrophe.


Wind and solar power’s intermittency means they are not available 24/7. In fact, the Germans have a term lamenting wind and solar’s intermittency, “Dunkelflaute” (dark doldrums).  Because we require power around the clock, there must be a back-up system at all times that is either battery-based, which is extremely costly and unproven on a large scale, or provided by traditional generating units, which would also be expensive since those technologies would not be operating to their maximum potential, having to spread costs over a lower amount of electricity production than they are capable of producing.

Land Requirements

Both wind and solar require significant amounts of land. Based on Harvard engineering data published in the Environmental Impact Letters, for the U.S. to reach 100 percent of its electricity through solar and wind power projects, it could require one-third of the country to be covered by solar and wind facilities.

The Suncyclopedia estimates two and a half acres are required per one megawatt of solar panels and four acres if the outbuildings associated with industrial solar power projects are included in the estimate. That estimate is dependent upon whether the solar arrays have trackers that move with the sun. If they do not, the estimate increases to six acres per one megawatt.

For wind turbines, the land required per megawatt of power produced varies based on their optimal position to capture the winds in the terrain that they are to occupy. Besides topography, setback regulations, which regulate the amount of distance that an industrial wind turbine must be placed away from homes so that noise pollution remains within legal limits, also affect the land area needed.

Setback regulations vary from state to state from twice the height of a turbine to two kilometers. Setbacks for ports and military-controlled lands are typically larger. Some researchers, however, find that on average, wind turbines should be spaced two-thirds of a mile from each other for optimal efficiency and others find that one to three acres are needed per turbine.

In The Footprint of Energy: Land Use of U.S. Electricity Production, Strata Policy found that wind power requires 70.64 acres per megawatt and solar power requires 43.50 acres per megawatt. In contrast, natural gas-fired power plants require 12.41 acres per megawatt. This means, solar power requires more than three and a half times more land per megawatt and wind requires more than five and a half times the amount of land per megawatt.

Capacity Factors

Winds do not blow at optimal speeds 24/7, 365 days of the year. At certain times, wind turbines may not produce electricity even when winds do blow. The speed at which most wind turbine blades start turning, known as the cut-in speed, typically ranges between seven to ten miles per hour.

Most turbines can produce their maximum rated power around 30 miles per hour, but that design speed is contingent upon the blades being new, clean, and without nicks or fractures from bird or bat impacts. When wind speeds are too high, turbine blades can lock into a stationary position to avoid damage—a condition that can occur between 35 and 55 miles per hour, known in the industry as the cut-out speed. According to the Energy Information Administration, wind turbines in the United States perform at 34.6 percent of their nameplate rating or the intended full-load output capacity.

Similarly, solar units in the U.S. perform at 25.7 percent of their nameplate rating. This is in contrast to natural gas units that can perform at as much as 85 percent or more of their nameplate ratings.

Renewable Subsidies

Despite the declining cost of wind and solar technologies, they depend on government subsidies and are not feasible without them. As Warren Buffet stated, “…we get a tax credit if we build a lot of wind farms. That’s the only reason to build them. They don’t make sense without the tax credit.”

The subsidies are paid by either electricity users or taxpayers or, many times, both. In the United States, the federal government subsidizes wind with the production tax credit and solar power with the investment tax credit. U.S. states subsidize solar and wind power with mandates for their production, forcing utilities to invest in them or purchase their power, regardless of the cost or impact on grid stability. States also give net metering subsidies for rooftop solar. In Germany, ratepayers subsidize the renewable industry, which has resulted in residential electricity prices three times those in the United States.

Furthermore, the subsidies for intermittent wind and solar discourage other innovation because they lead to low wholesale prices for innovators to compete against.  In essence, the subsidies force intermittent power into the system regardless of need. Doing so drives down the efficiency and economics of the other sources of electricity, which consumers are required to pay for anyway in order to ensure the system does not break down and fail to deliver electricity to homes and businesses.

Electricity Prices

Germany and Denmark have been world leaders in wind and solar investment. From 2006 to 2016, prices of electricity in Germany increased 51 percent and since 1995, electricity prices in Denmark have doubled as a result of wind and solar installation.

In the United States, electricity prices increased 7 percent from 2009 to 2017, while electricity from solar and wind increased from two to eight percent of generation. In 2017, California generated 23 percent of its electricity from wind and solar sources and its residential electricity rates were 18.24 cents per kilowatt-hour, at least 40 percent higher than any other western U.S. state. Other states that have increased their use of solar and wind generation have also seen large increases in their electricity prices.

The U.S. Energy Information Administration reports:

  • North Dakota’s electricity prices increased 40 percent while electricity from solar and wind increased from nine to 27 percent.
  • South Dakota’s electricity prices increased 34 percent while electricity from solar and wind increased from five to 30 percent.
  • Kansas’s electricity prices increased 33 percent while electricity from solar and wind increased from six to 36 percent.
  • Iowa’s electricity prices increased 21 percent while electricity from solar and wind increased from 14 to 37 percent.
  • Oklahoma’s electricity prices increased 18 percent while electricity from solar and wind increased from four to 32 percent.
  • Hawaii’s electricity prices increased 23 percent while electricity from solar and wind increased from three to 18 percent.
  • California’s electricity prices increased 22 percent while electricity from solar and wind increased from three to 23 percent.

A UK analysis of 3,000 onshore wind turbines found that they generate electricity efficiently for only 12-15 years—generating more than twice as much electricity in their first year than when they are 15 years old. Even when faced with the data, the wind energy industry and the government base their calculations on turbines having a lifespan of 30 years. Thus, the cost of wind is being underestimated, particularly when their costs are compared to other technologies.

Cost to Transition to 100-Percent Renewables

According to an analysis by the American Action Forum, the proposal to transition 100 percent of U.S. electricity production to renewable sources by 2030 would require at least $5.7 trillion of investment in renewable energy and storage. This is a ballpark estimate and not an in-depth projection, and may not include all the contingencies necessary to make the system work. The group also notes that it is likely to be a significant underestimation, as it reflects the lowest possible cost.

Assumptions of the analysis include:

  • the United States would use solar power during the day, and wind power during the night;
  • for the hours in the day where neither solar nor wind produce their stated capacity (due to capacity factors of these electricity sources), a mixture of hydroelectricity and storage is used;
  • the U.S. builds the entirety of all potential hydroelectricity resources (something which would be extremely controversial with environmentalists and time consuming well beyond 2030);
  • storage costs associated with batteries is their average operation and maintenance cost, rather than the significantly higher costs of batteries that can discharge a lot of electricity quickly and repeatedly throughout the day;
  • electricity demand is roughly flat (rather than demand spiking during afternoon hours); and,
  • there is no increase in the price of wind, solar, hydroelectricity, or storage, despite the fact that demand for all of these sources would skyrocket due to such policy 

The current electricity generating capacity of the United States is 1,085 gigawatts, which provides enough capacity to satisfy peak electricity demands, plus reserve capacity, which acts as a safety net in the event of supply disruptions, equipment failures, or other issues that prevent generation from meeting demand. To maintain an available capacity of 1,085 gigawatts, the United States would need to have well over 1,085 gigawatts of solar, wind, hydroelectricity, and storage because of the low capacity factors for solar (25.7 percent) and wind (34.6 percent), noted previously.

100% renewables

Construction Materials

Manufacturing wind turbines is a resource-intensive process. A typical wind turbine contains more than 8,000 different components, many of which are made from steel, cast iron, and concrete. One component is magnets made from neodymium and dysprosium—rare earth metals mined almost exclusively in China, which controls most of the world’s supply. Thin-film solar panels use rare earth metals like indiumand tellurium.

Converting the world’s largest economy to renewable energy would vastly increase demand overnight for these materials. It would also shift the United States’ self-reliance on electricity generation to a reliance on Chinese and other suppliers, unless countless new mines were started in the U.S. to develop the copper for electric motor windings and the strategic and critical rare earth metals that are essential to these technologies. The United States would be much more dependent on China for these materials than the United States was ever dependent on the Middle East for oil before the horizontal drilling and hydraulic fracturing revolution came along.

Without the use of fossil fuels, the wind and solar industries would also need to obtain substitutes for the cement and steel needed for producing and installing the turbines and solar panels. Further, it is not clear whether enough rare earth metals are available to build all the required units, particularly in the time frame of the Green New Deal.


Intermittent wind and solar cannot stand on their own. They must have some form of back-up power, from reliable coal, natural gas, nuclear units, storage capability from hydroelectric facilities, and/or batteries. Batteries of the size and scope needed for 100-percent renewables are unproven and not cost effective. Even if a 100 percent renewable future were feasible, the land requirements and costs of transitioning would be enormous and would require subsidies to ease the electricity price increases that would result. Germany’s experience of phasing out its nuclear plants in favor of wind and solar projects should be taken as a warning against the ludicrousness of this undertaking.

Electricity is not something with which to trifle. We take it for granted in the world’s richest and most advanced economy that things will work when we want them to work, but a 100 percent renewable plan would put that in jeopardy. The various pronouncements that glibly peddle reliance on wind and solar energy should be met with demands for verifiable, in-depth analysis of how to do it.  No such analysis has yet been delivered.

Want to support NaturalGasNOW an easy way?

Try the new Brave Browser and they’ll contribute for you!

Print Friendly, PDF & Email

12 thoughts on “If You Think the U.S. Can Go 100% Renewables, You’re Fantasizing

  1. Oil industry spokesman says we have to remain on fossil fuels – this is news?

    “The Institute for Energy Research (IER), founded in 1989 from a predecessor non-profit organization registered by Charles G. Koch and Robert L. Bradley Jr., advocates positions on environmental issues including deregulation of utilities, climate change denial, and claims that conventional energy sources are virtually limitless.

    It is a member of the Sustainable Development Network. The IER’s President was formerly Director of Public Relations Policy at Enron.”

    • Jan/HfP.
      Don’t you have a grass hut or yurt to hide out in somewhere? Before you that, you might want to take a geology course and try to explain the receding of the glaciers from the last Ice Age. I highly doubt that our Stone Age ancestors caused the climate change that made Lake Iroquois drop about 400 feet and helped change the topography of eastern New York State. http://www.whoi.edu/oceanus/feature/the-great-flood-of-new-york. If you profess “science”, then by all means, it is you and your manipulating ilk housed in either the tony Upper East Side of Manhattan apartments and/or in the opioid stained trenches of Planet Ithaca (which are all dependent upon natural gas use and other petroleum derived products) can go see for themselves the residual evidence of radical “climate change” from about 13.5K years ago. There is even a really cool museam located on RT 96 https://priweb.org/. that shows the remarkable history of Central New York and the many changes the region has gone through before and after the existence of humanity.

      Much like Vera, you are phony, plain and simple.

  2. I find it hilarious that anymore who thinks solar and wind are “green” when you start considering the environmental damage they can cause by just by construction and maintenance alone. Wind turbines have been depleting populations of raptors and bats which help keep destructive vermin and insect populations in check. Dems like AOC and ilk scream about “clean air and water” when these facilities would cause deforestation, erosion and increase use of pesticides. Of course the siting of these facilities would require the gutting of existing environmental and historical preservation regulations. It is one thing to conserve energy and be more efficient but what they preach cannot be accomplished as proposed.

    • Indeed! Just consider the Indian Point nuclear plant Cuomo wants to close. I believe it’s listed as 2000Mw, which it can churn out day and night regardless of wind or sunlight. Assume you plan to replace it with an array of 2Mw wind turbines. That would require 1000 of these monsters, each requiring about a 5 acre site. Poof – instant deforestation of 5000 acres, not including service roads, etc. Of course you could take a mix of farmland and forest, but the point is, it’s a massive environmental hit. AND – that is the nameplate rating of those turbines, which is the max output with the wind blowing at a given speed. Under that – less power. How to make up the deficit? Gas, of course!

      • Don’t forget the spider web of new transmission lines marching across the landscape through once pristine vistas and wetlands in order to carry the intermittent power that metro NY will have to wait on with baited breath or face a variety of rolling brownouts since supply will not be able to keep up with demand. This will not go over well as people will occasionally riot and cause much mayhem to rich and poor alike.

  3. Let me alert the media! Who on this site doesn’t know that renewable variability is caused by night and calm days?

    What I do know is that the EIA figures for renewables and energy costs are real but, only co-incidental, not cause and effect. Follow the EIA link to “Table 2.11.A. Consumption of Natural Gas for Electricity Generation by State, by Sector, December 2017 and December 2016 (Million Cubic Feet)” (page 80) and you will find that in nearly all states natural gas for electricity has gone up, often dramatically. Iowa – 218%, North Dakota – 203%, South Dakota – 115%, Kansas – 38%, Maryland – 542%. Using your logic, natural gas use caused higher prices. Please stop using such easily debunked misuse of statistics. You lies don’t help cause.

    The section on Construction Materials is also full of misleading nonsense. All energy solutions, renewable or gas, will require huge expenditures of money and natural resources to replace the existing infrastructure. CHP turbines use lots of rare and expensive material to make them reliable. There is a “rare earth” mine in California that closed due to cheaper production in China and China artificially limits exports to the US as part of the on going trade dispute with the Trump administration. It is only a matter of time until increased demand and constricted imports make domestic production viable, though I think the Chinese will flood the market in an attempt to kill their competition if the mine reopens. Spare me your crocodile tears.

    But it was in the second and last paragraphs you revealed your real purpose. There is no room for “reliable coal” in the gas movement. Coal is a dirty and inefficient substitute for natural gas. Three Trump cabinet departments (Energy, Interior and EPA) are run by coal interests that try to privilege it to the detriment of gas. Mitch McConnell’s former chief of staff and the drone at the Dept. of Energy who came up with the “reliable coal” plan have been appointed to FERC.

    It is long past time to sort out friends and enemies of natural gas. Flat out, if you are a friend of coal, if you think it has any role in the future, you are an enemy of natural gas.

    • DOE has been supportive of coal gasification which can be used for H2 production https://www.energy.gov/eere/fuelcells/hydrogen-production-coal-gasification which brings us to increased fuel cell use especially if you decentralize power for redundancy and/or remote locations. It also satisfies emissions goals provided that you get beyond the fear of another Hindenburg!!!

      So it doesn’t have to be burned in traditional facilities. I think Trump understands that.

      • The problem with coal gasification is that as long as renewables don’t have storage to make their power dispatchable, the power is available to disassociate water into hydrogen and oxygen. The gases could be stored on site (think the Broome county solar array that Vic Furman wrote about) and burned on site to produce dispatchable power. This eliminates the need for the multi-step and inefficient process to turn coal into gas.

  4. The simple solution and the only way to prove the greenies wrong is to eliminate the human race and see what the planet looks like in say 10 million years. You think we can get them to the front of the line to start the project since they think they are the majority.

  5. And the area required is based on Kilowatts, not kilowatt-hours available for consumer which, due to not 24’7 generation, looks even worse compared to gas/oil/coal/nuclear.

Leave a Reply

Your email address will not be published. Required fields are marked *